123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 |
- /**
- * @author yomboprime https://github.com/yomboprime
- *
- * @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
- *
- * Usage:
- *
- * Use the function prepareBreakableObject to prepare a Mesh object to be broken.
- *
- * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
- *
- * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
- *
- * Requisites for the object:
- *
- * - Mesh object must have a Geometry (not BufferGeometry) and a Material
- *
- * - The Geometry must be convex (this is not tested in the library). You can create convex
- * Geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
- * can also be used.
- *
- * Note: This lib adds member variables to object's userData member and to its vertices.
- * (see prepareBreakableObject function)
- * Use with caution and read the code when using with other libs.
- *
- * @param {double} minSizeForBreak Min size a debris can have to break.
- * @param {double} smallDelta Max distance to consider that a point belongs to a plane.
- *
- */
- THREE.ConvexObjectBreaker = function (minSizeForBreak, smallDelta) {
- this.minSizeForBreak = minSizeForBreak || 1.4;
- this.smallDelta = smallDelta || 0.0001;
- this.tempLine1 = new THREE.Line3();
- this.tempPlane1 = new THREE.Plane();
- this.tempPlane2 = new THREE.Plane();
- this.tempCM1 = new THREE.Vector3();
- this.tempCM2 = new THREE.Vector3();
- this.tempVector3 = new THREE.Vector3();
- this.tempVector3_2 = new THREE.Vector3();
- this.tempVector3_3 = new THREE.Vector3();
- this.tempResultObjects = { object1: null, object2: null };
- this.segments = [];
- var n = 30 * 30;
- for (var i = 0; i < n; i++) {
- this.segments[i] = false;
- }
- };
- THREE.ConvexObjectBreaker.prototype = {
- constructor: THREE.ConvexObjectBreaker,
- prepareBreakableObject: function (object, mass, velocity, angularVelocity, breakable) {
- // object is a THREE.Object3d (normally a Mesh), must have a Geometry, and it must be convex.
- // Its material property is propagated to its children (sub-pieces)
- // mass must be > 0
- // Create vertices mark
- var geometry = object.geometry;
- var vertices = geometry.vertices;
- for (var i = 0, il = vertices.length; i < il; i++) {
- vertices[i].mark = 0;
- }
- var userData = object.userData;
- userData.mass = mass;
- userData.velocity = velocity.clone();
- userData.angularVelocity = angularVelocity.clone();
- userData.breakable = breakable;
- },
- /*
- * @param {int} maxRadialIterations Iterations for radial cuts.
- * @param {int} maxRandomIterations Max random iterations for not-radial cuts
- * @param {double} minSizeForRadialSubdivision Min size a debris can have to break in radial subdivision.
- *
- * Returns the array of pieces
- */
- subdivideByImpact: function (object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations, minSizeForRadialSubdivision) {
- var debris = [];
- var tempPlane1 = this.tempPlane1;
- var tempPlane2 = this.tempPlane2;
- this.tempVector3.addVectors(pointOfImpact, normal);
- tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3);
- var maxTotalIterations = maxRandomIterations + maxRadialIterations;
- var scope = this;
- function subdivideRadial(subObject, startAngle, endAngle, numIterations) {
- if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) {
- debris.push(subObject);
- return;
- }
- var angle = Math.PI;
- if (numIterations === 0) {
- tempPlane2.normal.copy(tempPlane1.normal);
- tempPlane2.constant = tempPlane1.constant;
- }
- else {
- if (numIterations <= maxRadialIterations) {
- angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle;
- // Rotate tempPlane2 at impact point around normal axis and the angle
- scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact);
- tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2);
- }
- else {
- angle = ((0.5 * (numIterations & 1)) + 0.2 * (2 - Math.random())) * Math.PI;
- // Rotate tempPlane2 at object position around normal axis and the angle
- scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position);
- scope.tempVector3_3.copy(normal).add(subObject.position);
- tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2);
- }
- }
- // Perform the cut
- scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects);
- var obj1 = scope.tempResultObjects.object1;
- var obj2 = scope.tempResultObjects.object2;
- if (obj1) {
- subdivideRadial(obj1, startAngle, angle, numIterations + 1);
- }
- if (obj2) {
- subdivideRadial(obj2, angle, endAngle, numIterations + 1);
- }
- }
- subdivideRadial(object, 0, 2 * Math.PI, 0);
- return debris;
- },
- cutByPlane: function (object, plane, output) {
- // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
- // object2 can be null if the plane doesn't cut the object.
- // object1 can be null only in case of internal error
- // Returned value is number of pieces, 0 for error.
- var geometry = object.geometry;
- var points = geometry.vertices;
- var faces = geometry.faces;
- var numPoints = points.length;
- var points1 = [];
- var points2 = [];
- var delta = this.smallDelta;
- // Reset vertices mark
- for (var i = 0; i < numPoints; i++) {
- points[i].mark = 0;
- }
- // Reset segments mark
- var numPointPairs = numPoints * numPoints;
- for (var i = 0; i < numPointPairs; i++) {
- this.segments[i] = false;
- }
- // Iterate through the faces to mark edges shared by coplanar faces
- for (var i = 0, il = faces.length - 1; i < il; i++) {
- var face1 = faces[i];
- for (var j = i + 1, jl = faces.length; j < jl; j++) {
- var face2 = faces[j];
- var coplanar = 1 - face1.normal.dot(face2.normal) < delta;
- if (coplanar) {
- var a1 = face1.a;
- var b1 = face1.b;
- var c1 = face1.c;
- var a2 = face2.a;
- var b2 = face2.b;
- var c2 = face2.c;
- if (a1 === a2 || a1 === b2 || a1 === c2) {
- if (b1 === a2 || b1 === b2 || b1 === c2) {
- this.segments[a1 * numPoints + b1] = true;
- this.segments[b1 * numPoints + a1] = true;
- }
- else {
- this.segments[c1 * numPoints + a1] = true;
- this.segments[a1 * numPoints + c1] = true;
- }
- }
- else if (b1 === a2 || b1 === b2 || b1 === c2) {
- this.segments[c1 * numPoints + b1] = true;
- this.segments[b1 * numPoints + c1] = true;
- }
- }
- }
- }
- // Transform the plane to object local space
- var localPlane = this.tempPlane1;
- THREE.ConvexObjectBreaker.transformPlaneToLocalSpace(plane, object.matrix, localPlane);
- // Iterate through the faces adding points to both pieces
- for (var i = 0, il = faces.length; i < il; i++) {
- var face = faces[i];
- for (var segment = 0; segment < 3; segment++) {
- var i0 = segment === 0 ? face.a : (segment === 1 ? face.b : face.c);
- var i1 = segment === 0 ? face.b : (segment === 1 ? face.c : face.a);
- var segmentState = this.segments[i0 * numPoints + i1];
- if (segmentState) {
- // The segment already has been processed in another face
- continue;
- }
- // Mark segment as processed (also inverted segment)
- this.segments[i0 * numPoints + i1] = true;
- this.segments[i1 * numPoints + i0] = true;
- var p0 = points[i0];
- var p1 = points[i1];
- if (p0.mark === 0) {
- var d = localPlane.distanceToPoint(p0);
- // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
- if (d > delta) {
- p0.mark = 2;
- points2.push(p0);
- }
- else if (d < -delta) {
- p0.mark = 1;
- points1.push(p0);
- }
- else {
- p0.mark = 3;
- points1.push(p0);
- var p0_2 = p0.clone();
- p0_2.mark = 3;
- points2.push(p0_2);
- }
- }
- if (p1.mark === 0) {
- var d = localPlane.distanceToPoint(p1);
- // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
- if (d > delta) {
- p1.mark = 2;
- points2.push(p1);
- }
- else if (d < -delta) {
- p1.mark = 1;
- points1.push(p1);
- }
- else {
- p1.mark = 3;
- points1.push(p1);
- var p1_2 = p1.clone();
- p1_2.mark = 3;
- points2.push(p1_2);
- }
- }
- var mark0 = p0.mark;
- var mark1 = p1.mark;
- if ((mark0 === 1 && mark1 === 2) || (mark0 === 2 && mark1 === 1)) {
- // Intersection of segment with the plane
- this.tempLine1.start.copy(p0);
- this.tempLine1.end.copy(p1);
- var intersection = localPlane.intersectLine(this.tempLine1);
- if (intersection === undefined) {
- // Shouldn't happen
- console.error("Internal error: segment does not intersect plane.");
- output.segmentedObject1 = null;
- output.segmentedObject2 = null;
- return 0;
- }
- intersection.mark = 1;
- points1.push(intersection);
- var intersection_2 = intersection.clone();
- intersection_2.mark = 2;
- points2.push(intersection_2);
- }
- }
- }
- // Calculate debris mass (very fast and imprecise):
- var newMass = object.userData.mass * 0.5;
- // Calculate debris Center of Mass (again fast and imprecise)
- this.tempCM1.set(0, 0, 0);
- var radius1 = 0;
- var numPoints1 = points1.length;
- if (numPoints1 > 0) {
- for (var i = 0; i < numPoints1; i++) {
- this.tempCM1.add(points1[i]);
- }
- this.tempCM1.divideScalar(numPoints1);
- for (var i = 0; i < numPoints1; i++) {
- var p = points1[i];
- p.sub(this.tempCM1);
- radius1 = Math.max(radius1, p.x, p.y, p.z);
- }
- this.tempCM1.add(object.position);
- }
- this.tempCM2.set(0, 0, 0);
- var radius2 = 0;
- var numPoints2 = points2.length;
- if (numPoints2 > 0) {
- for (var i = 0; i < numPoints2; i++) {
- this.tempCM2.add(points2[i]);
- }
- this.tempCM2.divideScalar(numPoints2);
- for (var i = 0; i < numPoints2; i++) {
- var p = points2[i];
- p.sub(this.tempCM2);
- radius2 = Math.max(radius2, p.x, p.y, p.z);
- }
- this.tempCM2.add(object.position);
- }
- var object1 = null;
- var object2 = null;
- var numObjects = 0;
- if (numPoints1 > 4) {
- object1 = new THREE.Mesh(new THREE.ConvexGeometry(points1), object.material);
- object1.position.copy(this.tempCM1);
- object1.quaternion.copy(object.quaternion);
- this.prepareBreakableObject(object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak);
- numObjects++;
- }
- if (numPoints2 > 4) {
- object2 = new THREE.Mesh(new THREE.ConvexGeometry(points2), object.material);
- object2.position.copy(this.tempCM2);
- object2.quaternion.copy(object.quaternion);
- this.prepareBreakableObject(object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak);
- numObjects++;
- }
- output.object1 = object1;
- output.object2 = object2;
- return numObjects;
- }
- };
- THREE.ConvexObjectBreaker.transformFreeVector = function (v, m) {
- // input:
- // vector interpreted as a free vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- var x = v.x, y = v.y, z = v.z;
- var e = m.elements;
- v.x = e[0] * x + e[4] * y + e[8] * z;
- v.y = e[1] * x + e[5] * y + e[9] * z;
- v.z = e[2] * x + e[6] * y + e[10] * z;
- return v;
- };
- THREE.ConvexObjectBreaker.transformFreeVectorInverse = function (v, m) {
- // input:
- // vector interpreted as a free vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- var x = v.x, y = v.y, z = v.z;
- var e = m.elements;
- v.x = e[0] * x + e[1] * y + e[2] * z;
- v.y = e[4] * x + e[5] * y + e[6] * z;
- v.z = e[8] * x + e[9] * y + e[10] * z;
- return v;
- };
- THREE.ConvexObjectBreaker.transformTiedVectorInverse = function (v, m) {
- // input:
- // vector interpreted as a tied (ordinary) vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- var x = v.x, y = v.y, z = v.z;
- var e = m.elements;
- v.x = e[0] * x + e[1] * y + e[2] * z - e[12];
- v.y = e[4] * x + e[5] * y + e[6] * z - e[13];
- v.z = e[8] * x + e[9] * y + e[10] * z - e[14];
- return v;
- };
- THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function () {
- var v1 = new THREE.Vector3();
- var m1 = new THREE.Matrix3();
- return function transformPlaneToLocalSpace(plane, m, resultPlane) {
- resultPlane.normal.copy(plane.normal);
- resultPlane.constant = plane.constant;
- var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse(plane.coplanarPoint(v1), m);
- THREE.ConvexObjectBreaker.transformFreeVectorInverse(resultPlane.normal, m);
- // recalculate constant (like in setFromNormalAndCoplanarPoint)
- resultPlane.constant = -referencePoint.dot(resultPlane.normal);
- };
- }();
|