ConvexObjectBreaker.js 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. /**
  2. * @author yomboprime https://github.com/yomboprime
  3. *
  4. * @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
  5. *
  6. * Usage:
  7. *
  8. * Use the function prepareBreakableObject to prepare a Mesh object to be broken.
  9. *
  10. * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
  11. *
  12. * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
  13. *
  14. * Requisites for the object:
  15. *
  16. * - Mesh object must have a Geometry (not BufferGeometry) and a Material
  17. *
  18. * - The Geometry must be convex (this is not tested in the library). You can create convex
  19. * Geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
  20. * can also be used.
  21. *
  22. * Note: This lib adds member variables to object's userData member and to its vertices.
  23. * (see prepareBreakableObject function)
  24. * Use with caution and read the code when using with other libs.
  25. *
  26. * @param {double} minSizeForBreak Min size a debris can have to break.
  27. * @param {double} smallDelta Max distance to consider that a point belongs to a plane.
  28. *
  29. */
  30. THREE.ConvexObjectBreaker = function (minSizeForBreak, smallDelta) {
  31. this.minSizeForBreak = minSizeForBreak || 1.4;
  32. this.smallDelta = smallDelta || 0.0001;
  33. this.tempLine1 = new THREE.Line3();
  34. this.tempPlane1 = new THREE.Plane();
  35. this.tempPlane2 = new THREE.Plane();
  36. this.tempCM1 = new THREE.Vector3();
  37. this.tempCM2 = new THREE.Vector3();
  38. this.tempVector3 = new THREE.Vector3();
  39. this.tempVector3_2 = new THREE.Vector3();
  40. this.tempVector3_3 = new THREE.Vector3();
  41. this.tempResultObjects = { object1: null, object2: null };
  42. this.segments = [];
  43. var n = 30 * 30;
  44. for (var i = 0; i < n; i++) {
  45. this.segments[i] = false;
  46. }
  47. };
  48. THREE.ConvexObjectBreaker.prototype = {
  49. constructor: THREE.ConvexObjectBreaker,
  50. prepareBreakableObject: function (object, mass, velocity, angularVelocity, breakable) {
  51. // object is a THREE.Object3d (normally a Mesh), must have a Geometry, and it must be convex.
  52. // Its material property is propagated to its children (sub-pieces)
  53. // mass must be > 0
  54. // Create vertices mark
  55. var geometry = object.geometry;
  56. var vertices = geometry.vertices;
  57. for (var i = 0, il = vertices.length; i < il; i++) {
  58. vertices[i].mark = 0;
  59. }
  60. var userData = object.userData;
  61. userData.mass = mass;
  62. userData.velocity = velocity.clone();
  63. userData.angularVelocity = angularVelocity.clone();
  64. userData.breakable = breakable;
  65. },
  66. /*
  67. * @param {int} maxRadialIterations Iterations for radial cuts.
  68. * @param {int} maxRandomIterations Max random iterations for not-radial cuts
  69. * @param {double} minSizeForRadialSubdivision Min size a debris can have to break in radial subdivision.
  70. *
  71. * Returns the array of pieces
  72. */
  73. subdivideByImpact: function (object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations, minSizeForRadialSubdivision) {
  74. var debris = [];
  75. var tempPlane1 = this.tempPlane1;
  76. var tempPlane2 = this.tempPlane2;
  77. this.tempVector3.addVectors(pointOfImpact, normal);
  78. tempPlane1.setFromCoplanarPoints(pointOfImpact, object.position, this.tempVector3);
  79. var maxTotalIterations = maxRandomIterations + maxRadialIterations;
  80. var scope = this;
  81. function subdivideRadial(subObject, startAngle, endAngle, numIterations) {
  82. if (Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations) {
  83. debris.push(subObject);
  84. return;
  85. }
  86. var angle = Math.PI;
  87. if (numIterations === 0) {
  88. tempPlane2.normal.copy(tempPlane1.normal);
  89. tempPlane2.constant = tempPlane1.constant;
  90. }
  91. else {
  92. if (numIterations <= maxRadialIterations) {
  93. angle = (endAngle - startAngle) * (0.2 + 0.6 * Math.random()) + startAngle;
  94. // Rotate tempPlane2 at impact point around normal axis and the angle
  95. scope.tempVector3_2.copy(object.position).sub(pointOfImpact).applyAxisAngle(normal, angle).add(pointOfImpact);
  96. tempPlane2.setFromCoplanarPoints(pointOfImpact, scope.tempVector3, scope.tempVector3_2);
  97. }
  98. else {
  99. angle = ((0.5 * (numIterations & 1)) + 0.2 * (2 - Math.random())) * Math.PI;
  100. // Rotate tempPlane2 at object position around normal axis and the angle
  101. scope.tempVector3_2.copy(pointOfImpact).sub(subObject.position).applyAxisAngle(normal, angle).add(subObject.position);
  102. scope.tempVector3_3.copy(normal).add(subObject.position);
  103. tempPlane2.setFromCoplanarPoints(subObject.position, scope.tempVector3_3, scope.tempVector3_2);
  104. }
  105. }
  106. // Perform the cut
  107. scope.cutByPlane(subObject, tempPlane2, scope.tempResultObjects);
  108. var obj1 = scope.tempResultObjects.object1;
  109. var obj2 = scope.tempResultObjects.object2;
  110. if (obj1) {
  111. subdivideRadial(obj1, startAngle, angle, numIterations + 1);
  112. }
  113. if (obj2) {
  114. subdivideRadial(obj2, angle, endAngle, numIterations + 1);
  115. }
  116. }
  117. subdivideRadial(object, 0, 2 * Math.PI, 0);
  118. return debris;
  119. },
  120. cutByPlane: function (object, plane, output) {
  121. // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
  122. // object2 can be null if the plane doesn't cut the object.
  123. // object1 can be null only in case of internal error
  124. // Returned value is number of pieces, 0 for error.
  125. var geometry = object.geometry;
  126. var points = geometry.vertices;
  127. var faces = geometry.faces;
  128. var numPoints = points.length;
  129. var points1 = [];
  130. var points2 = [];
  131. var delta = this.smallDelta;
  132. // Reset vertices mark
  133. for (var i = 0; i < numPoints; i++) {
  134. points[i].mark = 0;
  135. }
  136. // Reset segments mark
  137. var numPointPairs = numPoints * numPoints;
  138. for (var i = 0; i < numPointPairs; i++) {
  139. this.segments[i] = false;
  140. }
  141. // Iterate through the faces to mark edges shared by coplanar faces
  142. for (var i = 0, il = faces.length - 1; i < il; i++) {
  143. var face1 = faces[i];
  144. for (var j = i + 1, jl = faces.length; j < jl; j++) {
  145. var face2 = faces[j];
  146. var coplanar = 1 - face1.normal.dot(face2.normal) < delta;
  147. if (coplanar) {
  148. var a1 = face1.a;
  149. var b1 = face1.b;
  150. var c1 = face1.c;
  151. var a2 = face2.a;
  152. var b2 = face2.b;
  153. var c2 = face2.c;
  154. if (a1 === a2 || a1 === b2 || a1 === c2) {
  155. if (b1 === a2 || b1 === b2 || b1 === c2) {
  156. this.segments[a1 * numPoints + b1] = true;
  157. this.segments[b1 * numPoints + a1] = true;
  158. }
  159. else {
  160. this.segments[c1 * numPoints + a1] = true;
  161. this.segments[a1 * numPoints + c1] = true;
  162. }
  163. }
  164. else if (b1 === a2 || b1 === b2 || b1 === c2) {
  165. this.segments[c1 * numPoints + b1] = true;
  166. this.segments[b1 * numPoints + c1] = true;
  167. }
  168. }
  169. }
  170. }
  171. // Transform the plane to object local space
  172. var localPlane = this.tempPlane1;
  173. THREE.ConvexObjectBreaker.transformPlaneToLocalSpace(plane, object.matrix, localPlane);
  174. // Iterate through the faces adding points to both pieces
  175. for (var i = 0, il = faces.length; i < il; i++) {
  176. var face = faces[i];
  177. for (var segment = 0; segment < 3; segment++) {
  178. var i0 = segment === 0 ? face.a : (segment === 1 ? face.b : face.c);
  179. var i1 = segment === 0 ? face.b : (segment === 1 ? face.c : face.a);
  180. var segmentState = this.segments[i0 * numPoints + i1];
  181. if (segmentState) {
  182. // The segment already has been processed in another face
  183. continue;
  184. }
  185. // Mark segment as processed (also inverted segment)
  186. this.segments[i0 * numPoints + i1] = true;
  187. this.segments[i1 * numPoints + i0] = true;
  188. var p0 = points[i0];
  189. var p1 = points[i1];
  190. if (p0.mark === 0) {
  191. var d = localPlane.distanceToPoint(p0);
  192. // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
  193. if (d > delta) {
  194. p0.mark = 2;
  195. points2.push(p0);
  196. }
  197. else if (d < -delta) {
  198. p0.mark = 1;
  199. points1.push(p0);
  200. }
  201. else {
  202. p0.mark = 3;
  203. points1.push(p0);
  204. var p0_2 = p0.clone();
  205. p0_2.mark = 3;
  206. points2.push(p0_2);
  207. }
  208. }
  209. if (p1.mark === 0) {
  210. var d = localPlane.distanceToPoint(p1);
  211. // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
  212. if (d > delta) {
  213. p1.mark = 2;
  214. points2.push(p1);
  215. }
  216. else if (d < -delta) {
  217. p1.mark = 1;
  218. points1.push(p1);
  219. }
  220. else {
  221. p1.mark = 3;
  222. points1.push(p1);
  223. var p1_2 = p1.clone();
  224. p1_2.mark = 3;
  225. points2.push(p1_2);
  226. }
  227. }
  228. var mark0 = p0.mark;
  229. var mark1 = p1.mark;
  230. if ((mark0 === 1 && mark1 === 2) || (mark0 === 2 && mark1 === 1)) {
  231. // Intersection of segment with the plane
  232. this.tempLine1.start.copy(p0);
  233. this.tempLine1.end.copy(p1);
  234. var intersection = localPlane.intersectLine(this.tempLine1);
  235. if (intersection === undefined) {
  236. // Shouldn't happen
  237. console.error("Internal error: segment does not intersect plane.");
  238. output.segmentedObject1 = null;
  239. output.segmentedObject2 = null;
  240. return 0;
  241. }
  242. intersection.mark = 1;
  243. points1.push(intersection);
  244. var intersection_2 = intersection.clone();
  245. intersection_2.mark = 2;
  246. points2.push(intersection_2);
  247. }
  248. }
  249. }
  250. // Calculate debris mass (very fast and imprecise):
  251. var newMass = object.userData.mass * 0.5;
  252. // Calculate debris Center of Mass (again fast and imprecise)
  253. this.tempCM1.set(0, 0, 0);
  254. var radius1 = 0;
  255. var numPoints1 = points1.length;
  256. if (numPoints1 > 0) {
  257. for (var i = 0; i < numPoints1; i++) {
  258. this.tempCM1.add(points1[i]);
  259. }
  260. this.tempCM1.divideScalar(numPoints1);
  261. for (var i = 0; i < numPoints1; i++) {
  262. var p = points1[i];
  263. p.sub(this.tempCM1);
  264. radius1 = Math.max(radius1, p.x, p.y, p.z);
  265. }
  266. this.tempCM1.add(object.position);
  267. }
  268. this.tempCM2.set(0, 0, 0);
  269. var radius2 = 0;
  270. var numPoints2 = points2.length;
  271. if (numPoints2 > 0) {
  272. for (var i = 0; i < numPoints2; i++) {
  273. this.tempCM2.add(points2[i]);
  274. }
  275. this.tempCM2.divideScalar(numPoints2);
  276. for (var i = 0; i < numPoints2; i++) {
  277. var p = points2[i];
  278. p.sub(this.tempCM2);
  279. radius2 = Math.max(radius2, p.x, p.y, p.z);
  280. }
  281. this.tempCM2.add(object.position);
  282. }
  283. var object1 = null;
  284. var object2 = null;
  285. var numObjects = 0;
  286. if (numPoints1 > 4) {
  287. object1 = new THREE.Mesh(new THREE.ConvexGeometry(points1), object.material);
  288. object1.position.copy(this.tempCM1);
  289. object1.quaternion.copy(object.quaternion);
  290. this.prepareBreakableObject(object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak);
  291. numObjects++;
  292. }
  293. if (numPoints2 > 4) {
  294. object2 = new THREE.Mesh(new THREE.ConvexGeometry(points2), object.material);
  295. object2.position.copy(this.tempCM2);
  296. object2.quaternion.copy(object.quaternion);
  297. this.prepareBreakableObject(object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak);
  298. numObjects++;
  299. }
  300. output.object1 = object1;
  301. output.object2 = object2;
  302. return numObjects;
  303. }
  304. };
  305. THREE.ConvexObjectBreaker.transformFreeVector = function (v, m) {
  306. // input:
  307. // vector interpreted as a free vector
  308. // THREE.Matrix4 orthogonal matrix (matrix without scale)
  309. var x = v.x, y = v.y, z = v.z;
  310. var e = m.elements;
  311. v.x = e[0] * x + e[4] * y + e[8] * z;
  312. v.y = e[1] * x + e[5] * y + e[9] * z;
  313. v.z = e[2] * x + e[6] * y + e[10] * z;
  314. return v;
  315. };
  316. THREE.ConvexObjectBreaker.transformFreeVectorInverse = function (v, m) {
  317. // input:
  318. // vector interpreted as a free vector
  319. // THREE.Matrix4 orthogonal matrix (matrix without scale)
  320. var x = v.x, y = v.y, z = v.z;
  321. var e = m.elements;
  322. v.x = e[0] * x + e[1] * y + e[2] * z;
  323. v.y = e[4] * x + e[5] * y + e[6] * z;
  324. v.z = e[8] * x + e[9] * y + e[10] * z;
  325. return v;
  326. };
  327. THREE.ConvexObjectBreaker.transformTiedVectorInverse = function (v, m) {
  328. // input:
  329. // vector interpreted as a tied (ordinary) vector
  330. // THREE.Matrix4 orthogonal matrix (matrix without scale)
  331. var x = v.x, y = v.y, z = v.z;
  332. var e = m.elements;
  333. v.x = e[0] * x + e[1] * y + e[2] * z - e[12];
  334. v.y = e[4] * x + e[5] * y + e[6] * z - e[13];
  335. v.z = e[8] * x + e[9] * y + e[10] * z - e[14];
  336. return v;
  337. };
  338. THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function () {
  339. var v1 = new THREE.Vector3();
  340. var m1 = new THREE.Matrix3();
  341. return function transformPlaneToLocalSpace(plane, m, resultPlane) {
  342. resultPlane.normal.copy(plane.normal);
  343. resultPlane.constant = plane.constant;
  344. var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse(plane.coplanarPoint(v1), m);
  345. THREE.ConvexObjectBreaker.transformFreeVectorInverse(resultPlane.normal, m);
  346. // recalculate constant (like in setFromNormalAndCoplanarPoint)
  347. resultPlane.constant = -referencePoint.dot(resultPlane.normal);
  348. };
  349. }();