123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- /* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
- *
- * This library is open source and may be redistributed and/or modified under
- * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
- * (at your option) any later version. The full license is in LICENSE file
- * included with this distribution, and on the openscenegraph.org website.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * OpenSceneGraph Public License for more details.
- */
- #ifndef OSG_PLANE
- #define OSG_PLANE 1
- #include <osg/Config>
- #include <osg/Export>
- #include <osg/Vec3>
- #include <osg/Vec4>
- #include <osg/Matrix>
- #include <osg/BoundingSphere>
- #include <osg/BoundingBox>
- #include <vector>
- namespace osg {
- /** @brief A plane class. It can be used to represent an infinite plane.
- *
- * The infinite plane is described by an implicit plane equation a*x+b*y+c*z+d = 0. Though it is not mandatory that
- * a^2+b^2+c^2 = 1 is fulfilled in general some methods require it (@see osg::Plane::distance). */
- class OSG_EXPORT Plane
- {
- public:
- #ifdef OSG_USE_FLOAT_PLANE
- /** Type of Plane class.*/
- typedef float value_type;
- typedef Vec3f Vec3_type;
- typedef Vec4f Vec4_type;
- #else
- /** Type of Plane class.*/
- typedef double value_type;
- typedef Vec3d Vec3_type;
- typedef Vec4d Vec4_type;
- #endif
- /** Number of vector components. */
- enum { num_components = 3 };
- /// Default constructor
- /** The default constructor initializes all values to zero.
- * @warning Although the method osg::Plane::valid() will return true after the default constructors call the plane
- * is mathematically invalid! Default data do not describe a valid plane. */
- inline Plane() { _fv[0]=0.0; _fv[1]=0.0; _fv[2]=0.0; _fv[3]=0.0; _lowerBBCorner = 0; _upperBBCorner = 0; }
- inline Plane(const Plane& pl) { set(pl); }
- /// Constructor
- /** The plane is described as a*x+b*y+c*z+d = 0.
- * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
- inline Plane(value_type a,value_type b,value_type c,value_type d) { set(a,b,c,d); }
- /// Constructor
- /** The plane can also be described as vec*[x,y,z,1].
- * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
- inline Plane(const Vec4f& vec) { set(vec); }
- /// Constructor
- /** The plane can also be described as vec*[x,y,z,1].
- * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed values are not normalized. */
- inline Plane(const Vec4d& vec) { set(vec); }
- /// Constructor
- /** This constructor initializes the internal values directly without any checking or manipulation.
- * @param norm The normal of the plane.
- * @param d The negative distance from the point of origin to the plane.
- * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed normal was not normalized. */
- inline Plane(const Vec3_type& norm,value_type d) { set(norm,d); }
- /// Constructor
- /** This constructor calculates from the three points describing an infinite plane the internal values.
- * @param v1 Point in the plane.
- * @param v2 Point in the plane.
- * @param v3 Point in the plane.
- * @remark After this constructor call the plane's normal is normalized in case the three points described a mathematically
- * valid plane.
- * @remark The normal is determined by building the cross product of (v2-v1) ^ (v3-v2). */
- inline Plane(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3) { set(v1,v2,v3); }
- /// Constructor
- /** This constructor initializes the internal values directly without any checking or manipulation.
- * @param norm The normal of the plane.
- * @param point A point of the plane.
- * @remark You may call osg::Plane::MakeUnitLength afterwards if the passed normal was not normalized. */
- inline Plane(const Vec3_type& norm, const Vec3_type& point) { set(norm,point); }
- inline Plane& operator = (const Plane& pl)
- {
- if (&pl==this) return *this;
- set(pl);
- return *this;
- }
- inline void set(const Plane& pl) { _fv[0]=pl._fv[0]; _fv[1]=pl._fv[1]; _fv[2]=pl._fv[2]; _fv[3]=pl._fv[3]; calculateUpperLowerBBCorners(); }
- inline void set(value_type a, value_type b, value_type c, value_type d) { _fv[0]=a; _fv[1]=b; _fv[2]=c; _fv[3]=d; calculateUpperLowerBBCorners(); }
- inline void set(const Vec4f& vec) { set(vec[0],vec[1],vec[2],vec[3]); }
- inline void set(const Vec4d& vec) { set(vec[0],vec[1],vec[2],vec[3]); }
- inline void set(const Vec3_type& norm, double d) { set(norm[0],norm[1],norm[2],d); }
- inline void set(const Vec3_type& v1, const Vec3_type& v2, const Vec3_type& v3)
- {
- Vec3_type norm = (v2-v1)^(v3-v2);
- value_type length = norm.length();
- if (length>1e-6) norm/= length;
- else norm.set(0.0,0.0,0.0);
- set(norm[0],norm[1],norm[2],-(v1*norm));
- }
- inline void set(const Vec3_type& norm, const Vec3_type& point)
- {
- value_type d = -norm[0]*point[0] - norm[1]*point[1] - norm[2]*point[2];
- set(norm[0],norm[1],norm[2],d);
- }
- /** flip/reverse the orientation of the plane.*/
- inline void flip()
- {
- _fv[0] = -_fv[0];
- _fv[1] = -_fv[1];
- _fv[2] = -_fv[2];
- _fv[3] = -_fv[3];
- calculateUpperLowerBBCorners();
- }
- /** This method multiplies the coefficients of the plane equation with a constant factor so that the
- * equation a^2+b^2+c^2 = 1 holds. */
- inline void makeUnitLength()
- {
- value_type inv_length = 1.0 / sqrt(_fv[0]*_fv[0] + _fv[1]*_fv[1]+ _fv[2]*_fv[2]);
- _fv[0] *= inv_length;
- _fv[1] *= inv_length;
- _fv[2] *= inv_length;
- _fv[3] *= inv_length;
- }
- /** calculate the upper and lower bounding box corners to be used
- * in the intersect(BoundingBox&) method for speeding calculations.*/
- inline void calculateUpperLowerBBCorners()
- {
- _upperBBCorner = (_fv[0]>=0.0?1:0) |
- (_fv[1]>=0.0?2:0) |
- (_fv[2]>=0.0?4:0);
- _lowerBBCorner = (~_upperBBCorner)&7;
- }
- /// Checks if all internal values describing the plane have valid numbers
- /** @warning This method does not check if the plane is mathematically correctly described!
- * @remark The only case where all elements have valid numbers and the plane description is invalid occurs if the plane's normal
- * is zero. */
- inline bool valid() const { return !isNaN(); }
- inline bool isNaN() const { return osg::isNaN(_fv[0]) || osg::isNaN(_fv[1]) || osg::isNaN(_fv[2]) || osg::isNaN(_fv[3]); }
- inline bool operator == (const Plane& plane) const { return _fv[0]==plane._fv[0] && _fv[1]==plane._fv[1] && _fv[2]==plane._fv[2] && _fv[3]==plane._fv[3]; }
- inline bool operator != (const Plane& plane) const { return _fv[0]!=plane._fv[0] || _fv[1]!=plane._fv[1] || _fv[2]!=plane._fv[2] || _fv[3]!=plane._fv[3]; }
- /** A plane is said to be smaller than another plane if the first non-identical element of the internal array is smaller than the
- * corresponding element of the other plane. */
- inline bool operator < (const Plane& plane) const
- {
- if (_fv[0]<plane._fv[0]) return true;
- else if (_fv[0]>plane._fv[0]) return false;
- else if (_fv[1]<plane._fv[1]) return true;
- else if (_fv[1]>plane._fv[1]) return false;
- else if (_fv[2]<plane._fv[2]) return true;
- else if (_fv[2]>plane._fv[2]) return false;
- else return (_fv[3]<plane._fv[3]);
- }
- inline value_type* ptr() { return _fv; }
- inline const value_type* ptr() const { return _fv; }
- inline Vec4_type asVec4() const { return Vec4_type(_fv[0],_fv[1],_fv[2],_fv[3]); }
- inline value_type& operator [] (unsigned int i) { return _fv[i]; }
- inline value_type operator [] (unsigned int i) const { return _fv[i]; }
- inline Vec3_type getNormal() const { return Vec3_type(_fv[0],_fv[1],_fv[2]); }
- /** Calculate the distance between a point and the plane.
- * @remark This method only leads to real distance values if the plane's norm is 1.
- * @sa osg::Plane::makeUnitLength */
- inline float distance(const osg::Vec3f& v) const
- {
- return _fv[0]*v.x()+
- _fv[1]*v.y()+
- _fv[2]*v.z()+
- _fv[3];
- }
- /** Calculate the distance between a point and the plane.
- * @remark This method only leads to real distance values if the plane's norm is 1.
- * @sa osg::Plane::makeUnitLength */
- inline double distance(const osg::Vec3d& v) const
- {
- return _fv[0]*v.x()+
- _fv[1]*v.y()+
- _fv[2]*v.z()+
- _fv[3];
- }
- /** calculate the dot product of the plane normal and a point.*/
- inline float dotProductNormal(const osg::Vec3f& v) const
- {
- return _fv[0]*v.x()+
- _fv[1]*v.y()+
- _fv[2]*v.z();
- }
- /** calculate the dot product of the plane normal and a point.*/
- inline double dotProductNormal(const osg::Vec3d& v) const
- {
- return _fv[0]*v.x()+
- _fv[1]*v.y()+
- _fv[2]*v.z();
- }
- /** intersection test between plane and vertex list
- return 1 if the bs is completely above plane,
- return 0 if the bs intersects the plane,
- return -1 if the bs is completely below the plane.*/
- inline int intersect(const std::vector<Vec3f>& vertices) const
- {
- if (vertices.empty()) return -1;
- int noAbove = 0;
- int noBelow = 0;
- int noOn = 0;
- for(std::vector<Vec3f>::const_iterator itr=vertices.begin();
- itr != vertices.end();
- ++itr)
- {
- float d = distance(*itr);
- if (d>0.0f) ++noAbove;
- else if (d<0.0f) ++noBelow;
- else ++noOn;
- }
- if (noAbove>0)
- {
- if (noBelow>0) return 0;
- else return 1;
- }
- return -1; // treat points on line as outside...
- }
- /** intersection test between plane and vertex list
- return 1 if the bs is completely above plane,
- return 0 if the bs intersects the plane,
- return -1 if the bs is completely below the plane.*/
- inline int intersect(const std::vector<Vec3d>& vertices) const
- {
- if (vertices.empty()) return -1;
- int noAbove = 0;
- int noBelow = 0;
- int noOn = 0;
- for(std::vector<Vec3d>::const_iterator itr=vertices.begin();
- itr != vertices.end();
- ++itr)
- {
- double d = distance(*itr);
- if (d>0.0) ++noAbove;
- else if (d<0.0) ++noBelow;
- else ++noOn;
- }
- if (noAbove>0)
- {
- if (noBelow>0) return 0;
- else return 1;
- }
- return -1; // treat points on line as outside...
- }
- /** intersection test between plane and bounding sphere.
- return 1 if the bs is completely above plane,
- return 0 if the bs intersects the plane,
- return -1 if the bs is completely below the plane.*/
- inline int intersect(const BoundingSphere& bs) const
- {
- float d = distance(bs.center());
- if (d>bs.radius()) return 1;
- else if (d<-bs.radius()) return -1;
- else return 0;
- }
- /** intersection test between plane and bounding sphere.
- return 1 if the bs is completely above plane,
- return 0 if the bs intersects the plane,
- return -1 if the bs is completely below the plane.*/
- inline int intersect(const BoundingBox& bb) const
- {
- // if lowest point above plane than all above.
- if (distance(bb.corner(_lowerBBCorner))>0.0f) return 1;
- // if highest point is below plane then all below.
- if (distance(bb.corner(_upperBBCorner))<0.0f) return -1;
- // d_lower<=0.0f && d_upper>=0.0f
- // therefore must be crossing plane.
- return 0;
- }
- /** Transform the plane by matrix. Note, this operation carries out
- * the calculation of the inverse of the matrix since a plane
- * must be multiplied by the inverse transposed to transform it. This
- * make this operation expensive. If the inverse has been already
- * calculated elsewhere then use transformProvidingInverse() instead.
- * See http://www.worldserver.com/turk/computergraphics/NormalTransformations.pdf*/
- inline void transform(const osg::Matrix& matrix)
- {
- osg::Matrix inverse;
- inverse.invert(matrix);
- transformProvidingInverse(inverse);
- }
- /** Transform the plane by providing a pre inverted matrix.
- * see transform for details. */
- inline void transformProvidingInverse(const osg::Matrix& matrix)
- {
- // note pre multiplications, which effectively transposes matrix.
- Vec4_type vec(_fv[0],_fv[1],_fv[2],_fv[3]);
- vec = matrix * vec;
- set(vec);
- makeUnitLength();
- }
- protected:
- /** Vec member variable. */
- value_type _fv[4];
- // variables cached to optimize calcs against bounding boxes.
- unsigned int _upperBBCorner;
- unsigned int _lowerBBCorner;
- };
- } // end of namespace
- #endif
|