123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401 |
- /* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
- *
- * This library is open source and may be redistributed and/or modified under
- * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
- * (at your option) any later version. The full license is in LICENSE file
- * included with this distribution, and on the openscenegraph.org website.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * OpenSceneGraph Public License for more details.
- */
- #ifndef OSG_QUAT
- #define OSG_QUAT 1
- #include <osg/Export>
- #include <osg/Vec3f>
- #include <osg/Vec4f>
- #include <osg/Vec3d>
- #include <osg/Vec4d>
- namespace osg {
- class Matrixf;
- class Matrixd;
- /** A quaternion class. It can be used to represent an orientation in 3D space.*/
- class OSG_EXPORT Quat
- {
- public:
- /** Data type of vector components.*/
- #ifdef OSG_USE_FLOAT_QUAT
- typedef float value_type;
- #else
- typedef double value_type;
- #endif
- /** Number of vector components. */
- enum { num_components = 4 };
- value_type _v[4]; // a four-vector
- inline Quat() { _v[0]=0.0; _v[1]=0.0; _v[2]=0.0; _v[3]=1.0; }
- inline Quat( value_type x, value_type y, value_type z, value_type w )
- {
- _v[0]=x;
- _v[1]=y;
- _v[2]=z;
- _v[3]=w;
- }
- inline Quat( const Vec4f& v )
- {
- _v[0]=v.x();
- _v[1]=v.y();
- _v[2]=v.z();
- _v[3]=v.w();
- }
- inline Quat( const Vec4d& v )
- {
- _v[0]=v.x();
- _v[1]=v.y();
- _v[2]=v.z();
- _v[3]=v.w();
- }
- inline Quat( value_type angle, const Vec3f& axis)
- {
- makeRotate(angle,axis);
- }
- inline Quat( value_type angle, const Vec3d& axis)
- {
- makeRotate(angle,axis);
- }
- inline Quat( value_type angle1, const Vec3f& axis1,
- value_type angle2, const Vec3f& axis2,
- value_type angle3, const Vec3f& axis3)
- {
- makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
- }
- inline Quat( value_type angle1, const Vec3d& axis1,
- value_type angle2, const Vec3d& axis2,
- value_type angle3, const Vec3d& axis3)
- {
- makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
- }
- inline Quat& operator = (const Quat& v) { _v[0]=v._v[0]; _v[1]=v._v[1]; _v[2]=v._v[2]; _v[3]=v._v[3]; return *this; }
- inline bool operator == (const Quat& v) const { return _v[0]==v._v[0] && _v[1]==v._v[1] && _v[2]==v._v[2] && _v[3]==v._v[3]; }
- inline bool operator != (const Quat& v) const { return _v[0]!=v._v[0] || _v[1]!=v._v[1] || _v[2]!=v._v[2] || _v[3]!=v._v[3]; }
- inline bool operator < (const Quat& v) const
- {
- if (_v[0]<v._v[0]) return true;
- else if (_v[0]>v._v[0]) return false;
- else if (_v[1]<v._v[1]) return true;
- else if (_v[1]>v._v[1]) return false;
- else if (_v[2]<v._v[2]) return true;
- else if (_v[2]>v._v[2]) return false;
- else return (_v[3]<v._v[3]);
- }
- /* ----------------------------------
- Methods to access data members
- ---------------------------------- */
- inline Vec4d asVec4() const
- {
- return Vec4d(_v[0], _v[1], _v[2], _v[3]);
- }
- inline Vec3d asVec3() const
- {
- return Vec3d(_v[0], _v[1], _v[2]);
- }
- inline void set(value_type x, value_type y, value_type z, value_type w)
- {
- _v[0]=x;
- _v[1]=y;
- _v[2]=z;
- _v[3]=w;
- }
- inline void set(const osg::Vec4f& v)
- {
- _v[0]=v.x();
- _v[1]=v.y();
- _v[2]=v.z();
- _v[3]=v.w();
- }
- inline void set(const osg::Vec4d& v)
- {
- _v[0]=v.x();
- _v[1]=v.y();
- _v[2]=v.z();
- _v[3]=v.w();
- }
- void set(const Matrixf& matrix);
- void set(const Matrixd& matrix);
- void get(Matrixf& matrix) const;
- void get(Matrixd& matrix) const;
- inline value_type & operator [] (int i) { return _v[i]; }
- inline value_type operator [] (int i) const { return _v[i]; }
- inline value_type & x() { return _v[0]; }
- inline value_type & y() { return _v[1]; }
- inline value_type & z() { return _v[2]; }
- inline value_type & w() { return _v[3]; }
- inline value_type x() const { return _v[0]; }
- inline value_type y() const { return _v[1]; }
- inline value_type z() const { return _v[2]; }
- inline value_type w() const { return _v[3]; }
- /** return true if the Quat represents a zero rotation, and therefore can be ignored in computations.*/
- bool zeroRotation() const { return _v[0]==0.0 && _v[1]==0.0 && _v[2]==0.0 && _v[3]==1.0; }
- /* -------------------------------------------------------------
- BASIC ARITHMETIC METHODS
- Implemented in terms of Vec4s. Some Vec4 operators, e.g.
- operator* are not appropriate for quaternions (as
- mathematical objects) so they are implemented differently.
- Also define methods for conjugate and the multiplicative inverse.
- ------------------------------------------------------------- */
- /// Multiply by scalar
- inline const Quat operator * (value_type rhs) const
- {
- return Quat(_v[0]*rhs, _v[1]*rhs, _v[2]*rhs, _v[3]*rhs);
- }
- /// Unary multiply by scalar
- inline Quat& operator *= (value_type rhs)
- {
- _v[0]*=rhs;
- _v[1]*=rhs;
- _v[2]*=rhs;
- _v[3]*=rhs;
- return *this; // enable nesting
- }
- /// Binary multiply
- inline const Quat operator*(const Quat& rhs) const
- {
- return Quat( rhs._v[3]*_v[0] + rhs._v[0]*_v[3] + rhs._v[1]*_v[2] - rhs._v[2]*_v[1],
- rhs._v[3]*_v[1] - rhs._v[0]*_v[2] + rhs._v[1]*_v[3] + rhs._v[2]*_v[0],
- rhs._v[3]*_v[2] + rhs._v[0]*_v[1] - rhs._v[1]*_v[0] + rhs._v[2]*_v[3],
- rhs._v[3]*_v[3] - rhs._v[0]*_v[0] - rhs._v[1]*_v[1] - rhs._v[2]*_v[2] );
- }
- /// Unary multiply
- inline Quat& operator*=(const Quat& rhs)
- {
- value_type x = rhs._v[3]*_v[0] + rhs._v[0]*_v[3] + rhs._v[1]*_v[2] - rhs._v[2]*_v[1];
- value_type y = rhs._v[3]*_v[1] - rhs._v[0]*_v[2] + rhs._v[1]*_v[3] + rhs._v[2]*_v[0];
- value_type z = rhs._v[3]*_v[2] + rhs._v[0]*_v[1] - rhs._v[1]*_v[0] + rhs._v[2]*_v[3];
- _v[3] = rhs._v[3]*_v[3] - rhs._v[0]*_v[0] - rhs._v[1]*_v[1] - rhs._v[2]*_v[2];
- _v[2] = z;
- _v[1] = y;
- _v[0] = x;
- return (*this); // enable nesting
- }
- /// Divide by scalar
- inline Quat operator / (value_type rhs) const
- {
- value_type div = 1.0/rhs;
- return Quat(_v[0]*div, _v[1]*div, _v[2]*div, _v[3]*div);
- }
- /// Unary divide by scalar
- inline Quat& operator /= (value_type rhs)
- {
- value_type div = 1.0/rhs;
- _v[0]*=div;
- _v[1]*=div;
- _v[2]*=div;
- _v[3]*=div;
- return *this;
- }
- /// Binary divide
- inline const Quat operator/(const Quat& denom) const
- {
- return ( (*this) * denom.inverse() );
- }
- /// Unary divide
- inline Quat& operator/=(const Quat& denom)
- {
- (*this) = (*this) * denom.inverse();
- return (*this); // enable nesting
- }
- /// Binary addition
- inline const Quat operator + (const Quat& rhs) const
- {
- return Quat(_v[0]+rhs._v[0], _v[1]+rhs._v[1],
- _v[2]+rhs._v[2], _v[3]+rhs._v[3]);
- }
- /// Unary addition
- inline Quat& operator += (const Quat& rhs)
- {
- _v[0] += rhs._v[0];
- _v[1] += rhs._v[1];
- _v[2] += rhs._v[2];
- _v[3] += rhs._v[3];
- return *this; // enable nesting
- }
- /// Binary subtraction
- inline const Quat operator - (const Quat& rhs) const
- {
- return Quat(_v[0]-rhs._v[0], _v[1]-rhs._v[1],
- _v[2]-rhs._v[2], _v[3]-rhs._v[3] );
- }
- /// Unary subtraction
- inline Quat& operator -= (const Quat& rhs)
- {
- _v[0]-=rhs._v[0];
- _v[1]-=rhs._v[1];
- _v[2]-=rhs._v[2];
- _v[3]-=rhs._v[3];
- return *this; // enable nesting
- }
- /** Negation operator - returns the negative of the quaternion.
- Basically just calls operator - () on the Vec4 */
- inline const Quat operator - () const
- {
- return Quat (-_v[0], -_v[1], -_v[2], -_v[3]);
- }
- /// Length of the quaternion = sqrt( vec . vec )
- value_type length() const
- {
- return sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]);
- }
- /// Length of the quaternion = vec . vec
- value_type length2() const
- {
- return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3];
- }
- /// Conjugate
- inline Quat conj () const
- {
- return Quat( -_v[0], -_v[1], -_v[2], _v[3] );
- }
- /// Multiplicative inverse method: q^(-1) = q^*/(q.q^*)
- inline const Quat inverse () const
- {
- return conj() / length2();
- }
- /* --------------------------------------------------------
- METHODS RELATED TO ROTATIONS
- Set a quaternion which will perform a rotation of an
- angle around the axis given by the vector (x,y,z).
- Should be written to also accept an angle and a Vec3?
- Define Spherical Linear interpolation method also
- Not inlined - see the Quat.cpp file for implementation
- -------------------------------------------------------- */
- void makeRotate( value_type angle,
- value_type x, value_type y, value_type z );
- void makeRotate ( value_type angle, const Vec3f& vec );
- void makeRotate ( value_type angle, const Vec3d& vec );
- void makeRotate ( value_type angle1, const Vec3f& axis1,
- value_type angle2, const Vec3f& axis2,
- value_type angle3, const Vec3f& axis3);
- void makeRotate ( value_type angle1, const Vec3d& axis1,
- value_type angle2, const Vec3d& axis2,
- value_type angle3, const Vec3d& axis3);
- /** Make a rotation Quat which will rotate vec1 to vec2.
- Generally take a dot product to get the angle between these
- and then use a cross product to get the rotation axis
- Watch out for the two special cases when the vectors
- are co-incident or opposite in direction.*/
- void makeRotate( const Vec3f& vec1, const Vec3f& vec2 );
- /** Make a rotation Quat which will rotate vec1 to vec2.
- Generally take a dot product to get the angle between these
- and then use a cross product to get the rotation axis
- Watch out for the two special cases of when the vectors
- are co-incident or opposite in direction.*/
- void makeRotate( const Vec3d& vec1, const Vec3d& vec2 );
- void makeRotate_original( const Vec3d& vec1, const Vec3d& vec2 );
- /** Return the angle and vector components represented by the quaternion.*/
- void getRotate ( value_type & angle, value_type & x, value_type & y, value_type & z ) const;
- /** Return the angle and vector represented by the quaternion.*/
- void getRotate ( value_type & angle, Vec3f& vec ) const;
- /** Return the angle and vector represented by the quaternion.*/
- void getRotate ( value_type & angle, Vec3d& vec ) const;
- /** Spherical Linear Interpolation.
- As t goes from 0 to 1, the Quat object goes from "from" to "to". */
- void slerp ( value_type t, const Quat& from, const Quat& to);
- /** Rotate a vector by this quaternion.*/
- Vec3f operator* (const Vec3f& v) const
- {
- // nVidia SDK implementation
- Vec3f uv, uuv;
- Vec3f qvec(_v[0], _v[1], _v[2]);
- uv = qvec ^ v;
- uuv = qvec ^ uv;
- uv *= ( 2.0f * _v[3] );
- uuv *= 2.0f;
- return v + uv + uuv;
- }
- /** Rotate a vector by this quaternion.*/
- Vec3d operator* (const Vec3d& v) const
- {
- // nVidia SDK implementation
- Vec3d uv, uuv;
- Vec3d qvec(_v[0], _v[1], _v[2]);
- uv = qvec ^ v;
- uuv = qvec ^ uv;
- uv *= ( 2.0f * _v[3] );
- uuv *= 2.0f;
- return v + uv + uuv;
- }
- protected:
- }; // end of class prototype
- } // end of namespace
- #endif
|